Products of Fréchet Spaces

نویسنده

  • GARY GRUENHAGE
چکیده

We give a survey of results and concepts related to certain problems on the Fréchet-Urysohn property in products. This material was presented in a workshop at the 2005 Summer Conference on Topology and its Applications at Denison University.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Topological Tensor Products of Functional Fréchet and Df Spaces

A convenient technique for calculating completed topological tensor products of functional Fréchet and DF spaces is developed. The general construction is applied to proving kernel theorems for a wide class of weighted spaces of smooth and entire analytic functions.

متن کامل

Workshop Lecture on Products of Fréchet Spaces

The general question, “When is the product of Fréchet spaces Fréchet?” really depends on the questions of when a product of α4 Fréchet spaces (also known as strongly Fréchet or countably bisequential spaces) is α4, and when it is Fréchet. Two subclasses of the class of strongly Fréchet spaces shed much light on these questions. These are the class of α3 Fréchet spaces and its subclass of א0-bis...

متن کامل

Banach and Fréchet spaces of functions

Many familiar and useful spaces of continuous or differentiable functions are Hilbert or Banach spaces, with pleasant completeness properties, but many are not. Some are Fréchet spaces, thus still complete, but lacking some of the conveniences of Banach spaces. Some other important spaces are not Fréchet, either. Still, some of these important spaces are colimits of Fréchet spaces (or of Banach...

متن کامل

On sequence spaces for Fréchet frames

We analyze the construction of a sequence space Θ̃, resp. a sequence of sequence spaces, in order to have {gi} ∞ i=1 as a Θ̃-frame or Banach frame for a Banach space X , resp. pre-F -frame or F -frame for a Fréchet space XF = ∩s∈N0Xs, where {Xs}s∈N0 is a sequence of Banach spaces.

متن کامل

Bounded Operators and Isomorphisms of Cartesian Products of Fréchet Spaces

where Lc(X, Y ) denotes the subspace of all compact operators. This phenomenon was studied later by many authors (see e.g. [1; 5; 11; 12; 13; 14; 15; 20; 21]); of prime importance are Vogt’s results [24] giving a generally complete description of the relations (1) for the general case of Fréchet spaces (for further generalizations see also [3; 4]). Originally, the main goal in [25; 26] was the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005